Hardy–Littlewood–Sobolev and Stein–Weiss inequalities and integral systems on the Heisenberg group
نویسندگان
چکیده
In this paper, we study two types of weighted Hardy–Littlewood–Sobolev (HLS) inequalities, also known as Stein–Weiss inequalities, on the Heisenberg group. More precisely, we prove the |u| weighted HLS inequality in Theorem 1.1 and the |z| weighted HLS inequality in Theorem 1.5 (where we have denoted u = (z, t) as points on the Heisenberg group). Then we provide regularity estimates of positive solutions to integral systems which are Euler–Lagrange equations of the possible extremals to the Stein–Weiss inequalities. Asymptotic behavior is also established for integral systems associated to the |u| weighted HLS inequalities around the origin. By these a priori estimates, we describe asymptotically the possible optimizers for sharp versions of these inequalities. © 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
A New, Rearrangement-free Proof of the Sharp Hardy-littlewood-sobolev Inequality
We show that the sharp constant in the Hardy-Littlewood-Sobolev inequality can be derived using the method that we employed earlier for a similar inequality on the Heisenberg group. The merit of this proof is that it does not rely on rearrangement inequalities; it is the first one to do so for the whole parameter range.
متن کاملSharp constants in several inequalities on the Heisenberg group
We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Laplacian and c...
متن کاملSharp Constants in Several Inequalities on the Heisenberg Group Rupert L. Frank and Elliott H. Lieb
Abstract. We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Lapla...
متن کاملSymmetry of Solutions to Some Systems of Integral Equations
In this paper, we study some systems of integral equations, including those related to Hardy-Littlewood-Sobolev (HLS) inequalities. We prove that, under some integrability conditions, the positive regular solutions to the systems are radially symmetric and monotone about some point. In particular, we established the radial symmetry of the solutions to the Euler-Lagrange equations associated wit...
متن کاملA Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem
Based on properties of vector fields, we prove Hardy inequalities with remainder terms in the Heisenberg group and a compact embedding in weighted Sobolev spaces. The best constants in Hardy inequalities are determined. Then we discuss the existence of solutions for the nonlinear eigenvalue problems in the Heisenberg group with weights for the psub-Laplacian. The asymptotic behaviour, simplicit...
متن کامل